如何设计凸轮_凸轮理论轮廓线的画法 | ||
如果滚子半径太小不能满足安装和强度要求,就应当加大凸轮基圆尺寸,重新设计凸轮。仅供参考,不索谢如果你是因为携带或传输不便,需要将大文件分割成若干适当大小的,使用时整合复原的话,用Knife for File大文件切割/复原器,不会差一个字节的绿色免费软件:Knife for File大文件切割/复原器,小巧精致,一看就会。 sina下载里就有,google或baidu搜索名字"Knife for File"亦可找到。 注:这个工具针对目标只是单纯的分割,不管其格式,所以视频文件切割成的小文件,是不能单独播放的。Bo凸轮分割器作用ilsoft Video Splitter (formerly AVI/MPEG/RM/WMV Splitter)is a tool to split, cut or trim a large AVI ,MPEG, RM, ASF, WMV, 3GP or MP4 file into smaller video clips without re-encode. With a built-in video player, Video Cutter allows you easily cut AVI ,MPEG, RM, ASF, WMV, 3GP or MP4 file by time or the selection as needed.。 如何设计凸轮(solidworks根据轨迹生成凸轮)Direct stream cut, without re-encode Support split AVI, Divx, MPEG-4 file Support split MPEG-1, MPEG-2, VOB file Support split ASF, WMV, WMA file Support split Real Media(.RM, .RMVB) file Support split MP4(.mp4, .m4a) file Support split 3GP(.3gp, 3g2) file Support large video file, even large then 2GB 快速而无画质损失,因为不是重编码(这点很重要)网上凸轮分割器常见的分割合并软件基本都是重编码,时间长且不能保留原画质。不信你多试试,就知道这个有多好了。 当然要是格式转换,显而易见肯定得重编码了。 是共享软件,不过注册码很好找的。 官网是: http://www.boilsoft.com/ 另外他还有合并软件等等。 另外我没用过中文版,不过就几个按钮很简单的。这种软件就跟播放器一样。几个图标、没几个按钮。用大括号标记起始结束位置,再点那把剪刀。 百度下,我发现有很多汉化版的下载。。 如何设计凸轮(凸轮机构设计的步骤)须把从动系统当作是一个弹性系统来设计从动件远离凸轮回转中心的这一行程称推程,对应的凸轮转角称为运动角 凸轮间歇机构 2.2用高副低代方法设计平面凸轮的基本原理据高副低代理论,平面机构中的高副可用含有2个低副的虚拟构件代替,低副中心位于运动副元素的曲率中心处,代换前后,机构自由度及瞬时运动不变。将凸轮与从动件瞬时接触点M处的高副用带2个低副的杆件代替,代换后,平面连杆机构主、从动件的瞬时运动特性分别和凸轮及凸轮从动件完全一致,该瞬时平面连杆机构的压力角即凸轮机构的压力角。对于滚子从动件盘形凸轮机构和移动凸轮机构,虚拟杆为带两个转动副的连杆AB,转动副的中心分别位于凸轮廓线上点M处的曲率中心A和滚子中心B处,点A到点B间的长度lAB即凸轮理论廓线上点B处曲率半径,点A、M间长度即凸轮实际廓线上点M处曲率半径。对于平底从动件盘形凸轮机构,虚拟杆为带一转动副的滑块,转动副的中心位于凸轮廓线上点M处的曲率中心A处,导路垂直于点M的运动方向。对代换后的平面连杆机构建立位移、速度、加速度的矢量方程式,可求得虚拟连杆长和方向,进而得出凸轮廓线方程、曲率半径和压力角表达式。2.3盘形凸轮的设计盘形凸轮是最常用的凸轮,设计时,首先初步拟定凸轮轮廓基圆半径、滚子半径、许用压力角和许用曲率半径以及必须的尺寸参数,再根据机构工作要求选定凸轮转速、从动件运动规律和升程h、推程运动角、回程运动角、远休止角、近休止角。据设计的从动件运动规律,求取直动从动件位移、速度、加速度或摆动从动件角位移、角速度、角加速度,再据此分析代换机构中虚拟杆的杆长和方向,求取凸轮实际廓线坐标,并检验压力角和实际曲率半径,若不满足,调整相应的参数。考虑到圆向量函数[8]直观性强,可避免公式推导中不必要的展开,采用圆向量函数表达矢量,矢量用单位向量或与模的乘积表示,表示与x轴之间有向角为的单位向量,表示与x轴之间有向角为的单位向量,自x轴正向度量,逆时针为正,顺时针度量为负。圆向量的计算法则详见附录I。以凸轮回转中心O为原点建立直角坐标系Oxy,x、y轴单位向量分别为i、j。图2.1中用粗实线表示凸轮转过任意角时,高副低代所得平面连杆机构。机构中各构件的转角、角速度、角加速度逆时针取正、顺时针取负。2.3.1滚子直动从动件盘形凸轮机构中的凸轮设计偏置滚子直动从动件盘型凸轮机构,从动件导路偏距为w(导路在x轴左侧w为正,反之为负),升程h,从动滚子中心初始位置处于B0点,当凸轮转过角后,如图2.1所示,从动滚子中心处于B点。凸轮机构高副低代后得到曲柄滑块机构OAB,滑块上B点位移、速度、加速度矢量方程分别为(2-7)式中图2.1滚子直动从动件盘形凸轮机构的高副低代(2-8) (2-9)由式(2-7)(2-8)(2-9)得: (2-10)当时, ;当时,,(2-11)AB杆的方向亦即从动件受力方向,从动件运动沿y轴方向,凸轮机构压力角为 (2-12)点M处曲率半径为即 (2-13)从动滚子与凸轮轮廓接触点M的向径为,将该向径反方向旋转角,得凸轮处于初始位置时点M的向径: (2-14) 式(2-14)分别点乘,得凸轮实际廓线的直角坐标方程 (2-15)机床加工凸轮时,常采用铣刀、砂轮等圆形刀具。给定刀具半径,刀具与凸轮廓点M接触时,刀具中心Q必在代换机构的虚拟连杆方向,与点M相距。用代换式(2-15)中的,得圆形刀具中心轨迹曲线直角坐标方程 (2-16)取时,式(2-15)即对心式直动从动件盘形凸轮机构凸轮廓线直角坐标方程;取时,式(2-15)即尖底直动从动件盘形凸轮机构的实际凸轮廓线方程,亦可看作滚子直动从动件盘形凸轮机构的理论凸轮廓线方程。2.3.2滚子摆动从动件盘形凸轮机构中的凸轮设计图2.2所示滚子摆动从动件盘形凸轮机构,摆杆摆动中心C,杆长为l,机架OC长为b,从动件处于起始位置时,滚子中心处于B0点,摆杆与机架OC之间的夹角为,当凸轮转过角后,从动件摆过角,滚子中心处于B点。凸轮机构高副低代后得到平面连杆机构OABC,从动杆BC上B点位移、速度、加速度矢量式为 (2-17)图2.2滚子摆动从动件盘形凸轮机构的高副低代 (2-18)(2-19)式(2-17)中。在文献[10]中,从动件的角速度、角加速度在回程时为负,推程时为正,而此处逆时针为正,顺时针为负,所以引用公式时,须添加负号。由式(2-17)(2-18)(2-19)得 (2-20)当时,;当时,, (2-21)AB杆的方向即从动件受力方向,从动件运动方向垂直于CB杆,凸轮机构压力角为 (2-22)点M处曲率半径为即 (2-23)凸轮实际廓线上点M的向径为。将该向径反方向旋转角,得凸轮处于初始位置时点M的向径 (2-24)式(2-24)分别点乘,得凸轮实际廓线的直角坐标方程 (2-25)用代换式(2-25)中的,得圆形刀具中心轨迹曲线直角坐标方程 (2-26)当取时,式(2-25)即尖底摆动从动件盘形凸轮机构的实际凸轮廓线方程,亦可看作滚子摆动从动件盘形凸轮机构的理论凸轮廓线方程。2.3.3平底直动从动件盘形凸轮机构中的凸轮设计图2.3平底直动从动件盘形凸轮机构的高副低代平底从动件盘形凸轮机构高副元素的曲率中心分别位于凸轮廓该点曲率中心A和垂直于平底的无穷远处,高副可用导路平行于平底的滑块A表示。图2.3所示偏置平底直动从动件盘形凸轮机构,导路偏距e,平底中心初始位置处于B0点,当凸轮转过角后,平底中心处于B点,。列从动件位移、速度、加速度矢量方程式 (2-27) (2-28) (2-29)矢量式(2-27)(2-28)(2-29)中有六个未知量,可求,求得 。点M处曲率半径 ,即 (2-30)平底与凸轮廓线接触点M的向径为。将该向径反方向旋转角,得凸轮处于初始位置时点M的向径 (2-31) 式(2-31)分别点乘,得凸轮实际廓线的直角坐标方程 (2-32)刀具与凸轮廓点M接触时,刀具中心Q必在AM方向,与点M相距。用代换式(2-32)中的,得圆形刀具中心轨迹曲线直角坐标方程 (2-33)显然,平底直动从动件盘形凸轮机构中的凸轮轮廓与偏心距大小无关。当平底垂直于从动件导路时,压力角为 (2-34)2.3.4平底摆动从动件盘形凸轮机构中的凸轮设计图2.4所示平底摆动从动件盘形凸轮机构,机架OC长为b,摆杆在虚线所示初始位置与机架OC之间的夹角为,当凸轮转过角后,平底转到CM处。此时代换机构从动件角位移、角速度、角加速度矢量方程式为 (2-35) (2-36)(2-37) 图2.4平底摆动从动件盘形凸轮机构的设计式(2-36)、(2-37)中。矢量式(2-35)(2-36)(2-37)中共有六个未知量, 可求,因推导需要一些技巧,此处给出较为详细的推导过程。将式(2-36)中各矢量旋转,得 (2-38)将式(2-35)(2-38)等号两边矢量两两相减,得 (2-39)将式(2-39)等号两边同时点乘,得。因,可得 (2-40)将式(2-37)(2-38)等号两边矢量两两相加,得 (2-41)由式(2-39)和 (2-41)可得 (2-42)将式(2-42)等号两边同时点乘,得,则 (2-43)将式(2-43)带入式(2-39)中,得 (2-44)点M处曲率半径即MA的长度,即 (2-45)从动摆杆上M点的受力方向衡与速度方向一致,压力角为 (2-46)平底与凸轮廓线接触点M的向径为。 将该向径反方向旋转角,得凸轮处于初始位置时点M的向径: (2-47)式(2-47)分别点乘后求得凸轮实际廓线的直角坐标方程 (2-48)刀具与凸轮廓点M接触时,刀具中心Q必在AM方向,与点M相距,其向径为 (2-49)直角坐标方程为 (2-50)2.4圆柱/移动凸轮机构中的凸轮设计圆柱凸轮属空间凸轮机构,其轮廓曲线为一条空间曲线,不能直接在平面上表示。但在低速轻载的工作条件下,可以将圆柱面展开成平面,圆柱凸轮便成为平面移动凸轮,可以运用高副低代的方法对其进行设计。2.4.1直动推杆圆柱/移动凸轮机构中的凸轮设计图2.5a为直动推杆移动凸轮机构运动示意图,也可看作将圆柱凸轮展开后,得到的机构运动示意图,滚子中心B,滚子中心与凸轮廓线接触点处的曲率中心为A。图2.5b表示高副低代后得到的平面连杆机构,设圆柱凸轮半径为R,速度,以滚子最低点o为圆心,以直动推杆升程方向为y轴,建立坐标系xoy,建立代换机构的速度、加速度矢量方程 (2-51) (2-52)变换式(2-51)为 (2-53)图2.5a 图2.5b图2.5直动推杆圆柱/移动凸轮的高副低代将式(2-53)等号两边分别点乘 ,并将所得二式等号两边分别相除,得 (2-54)当时,当时,AB杆的方向亦即从动件受力方向,从动件运动沿方向y轴方向,凸轮机构压力角为 (2-55)由式(2-51)和(2-52),可求得 (2-56)点M处曲率半径为 (2-57)从动滚子与凸轮轮廓接触点M的向径为 (2-58)将该接触点M沿凸轮平动方向的反向移动,得凸轮处于初始状态时点M的位置,此时向径 (2-59)将式(2-59)分别点乘,得凸轮实际廓线的直角坐标方程 (2-60)式(2-58)(2-59)(2-60)中“+”表示凸轮轮廓线上部,“-”表示凸轮轮廓线下部。2.4.2摆动推杆圆柱/移动凸轮机构中的凸轮设计图2.6a为摆动推杆移动凸轮机构运动示意,也可看作将摆动推杆圆柱凸轮机构中凸轮展开后,得到的机构运动示意图,滚子中心B,滚子中心与凸轮廓线接触点处的曲率中心为A。图2.6 b表示高副低代后得到的平面连杆机构,设圆柱凸轮半径为R,速度,摆秆的任一瞬时摆角,最大摆角为,摆角速度为摆秆的回转中心o通常在摆动幅角的等分线上,以o为圆心,以凸轮移动方向为x轴,建立坐标系xoy,列代换机构的速度、加速度矢量方程图2.6摆动推杆圆柱/移动凸轮机构的高副低代 (2-61) (2-62)式中。将式(2-61)中各矢量旋转后化为 (2-63)将式(2-63)等号两边分别点乘 ,并将所得二式等号两边分别相除,得 (2-64)当时, ;当时,AB杆的方向亦即从动件受力方向,从动件运动沿方向y轴方向,凸轮机构压力角为 (2-65)由(2-62)(2-63)联列可求得(2-66) 接触点M处曲率半径为 (2-67)从动滚子与凸轮轮廓接触点M的向径为 (2-68)将该向径沿展开凸轮平动方向的反向运动距离,即得凸轮处于初始位置时点M的向径 (2-69)将式(2-67)分别点乘,得凸轮实际廓线的直角坐标方程 (2-70)式(2-68)(2-69)(2-70)中“+”对应着凸轮廓线上部,“-” 对应着凸轮廓线下部。。 |
||